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Abstract
Zwanzig introduced a projection operator P̂ z such that P̂ zf , where f solves the
Liouville equation, obeys a closed kinetic equation. On multiplying P̂ zf by a
finite set of phase functions {Âi(x)} and integrating over phase space, we get
values {αi} agreeing with those calculated from f . Furthermore, one can find P̂

such that P̂ f = fr has a specified form, e.g. fT , the linearization of the Jaynes
distribution fJ , and also satisfies the integral conditions imposed on P̂ zf. The
equation for fr = fT given by Los linearizes the Robertson kinetic equation
for fJ. Multiplying the Los equation by Âi(x) and integrating over x, we get
an equation for α̇i describing the irreversible approach to equilibrium. This
agrees with existing phenomenology if the initial state term involving fT (0, x)

vanishes and relaxation times are >0. Here we show that the initial state term
vanishes if t = 0 is far enough along in system evolution and C(t) = 〈ÂÂ(t)〉
decays exponentially at long times. This work addresses problems left hitherto
incomplete in the projection operator approach to irreversibility.

PACS numbers: 05.20.Dd, 05.30.−d

1. Introduction

Following the original work of Zwanzig [1], a number of approaches have used a projection
operator P̂ to define a ‘relevant part’ fr and ‘irrelevant part’ fi of the exact solution f of the
Liouville equation

ḟ = −iL̂f (1)

with
fr ≡ P̂ f (2a)

fi ≡ (1 − P̂ )f ≡ Q̂f. (2b)

L̂ is the self-adjoint Liouville operator. fr gives exactly a set of statistical expectation values

αi ≡
∫

f Âi(x) dx =
∫

frÂi(x) dx (1 � i � ν) (3)
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where integration is over the accessible phase space, and Âi(x) depends on the phase
coordinates x of the system. The values {αi(t)} predict quantities obtainable from the data in
a given experiment.

From (1), by operating with P̂ , one can derive [1, 2] equations for ḟr and ḟi . Using the
second of these equations to eliminate fi from the first, one gets the closed equation [2]

∂fr/∂t = −iP̂ L̂fr −
∫ t

0
P̂ L̂ exp[−Q̂L̂(t − t1)]Q̂L̂fr(t1, x) dt1 − iP̂ L̂ exp[−iQ̂L̂t]fi(0, x)

(4)

in which we can set fi = f − fr . Multiplying (4) successively by functions {Âi(x)} and
integrating over x, one obtains evolution equations for the measurable variables {αi(t)} which
characterize a non-equilibrium state. Since fr satisfies (4) whilst (4) is exact, the kinetic
equations obtained as moments of (4) are also exact. The evolution equations describe
experiment provided the set {αi} includes all variables whose values can be extracted from
the data we seek to analyse. The projection operator approach will successfully predict
irreversibility from the Liouville equation if we can evaluate moments of all the terms in (4)
including the initial state term involving fi . Calculation of this term has been neglected save
by Los [2].

The moment equations for α̇i(1 � i � v) obtained from (4) can be cast [1, 3] in the
form of phenomenological equations of non-equilibrium thermodynamics, provided we can
assume that t = 0 is so far in the past that the contribution [α̇]0 to α̇ of the initial state term
involving fi(0, x) can be neglected. Here and in what follows we take ν = 1 for computational
simplicity and consider the evolution of one variable α = ∫ frÂ(x) dx. We have

[α̇]0 ≡ −
∫

ÂiL̂ exp[−iQ̂L̂t]Q̂f (0, x) dx

= (∂/∂t)

∫
Â exp[−iLQ̂t] f (0, x) dx. (5)

When the initial state distribution, f (0, x), which is the t → 0 limit of the solution of (1), is not
known, we are led to average over all possible initial states. The random phase approximation
(RPA) takes this average to be zero provided t � 0. If t ∼ 0, [α̇]0 must be taken into account.
Los [2] shows that [α̇]0 will vanish as t increases provided correlations 〈ÂiÂj · · · Âk(t)〉 of two
or more operators vanish with increasing time. Here we shall make a statistical evaluation of
(5) showing that it will indeed vanish at times of the order of those considered in the evolution
equations of non-equilibrium thermodynamics, e.g. the period of an ultrasonic wave. RPA
will be correct if α(t) and C(t) ≡ 〈ÂÂ(t)〉 have the same relaxation time. That these times
are equal follows from the Onsager fluctuation-regression hypothesis used to prove Onsager
symmetry in classical irreversible thermodynamics [4]. This hypothesis can be weakened
somewhat (cf section 3).

In some cases, one can readily define P̂ so that fr = P̂ f has a predetermined form. For
example, if

∫
f0Âi(x)Âj (x) dx = δij , then for χ(x) an arbitrary integrable function take

P̂ χ ≡ f0

∑
i�0

Âi(x)

∫
Âi(y)χ(y) dy (6a)

Â0(x) ≡ 1 (6b)

f0 = Ṽ −1. (6c)
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Here we assume an energy-shell ensemble with Ṽ , the volume of the shell over which
x-integrations are taken. f0 is the equilibrium distribution. With this definition one gets

P̂ f ≡ fT (t, x) = f0

[
1 +

ν∑
i=1

α(t)Âi(x)

]
(7)

where fT is the linearization of the Jaynesian distribution, fJ (t, x) [5]. fJ is obtained by
minimizing the Shannon information [6] and fT by minimizing the Tsallis information measure
Iq[7] for q = 2

I2[f̃ ] ≡
∫

f̃ (x, t)2 dx. (8)

The minimization in both cases, i.e. fJ and fT , is done subject to conditions (3).
In this paper, the importance of fT stems from the fact that it yields exact moments

αi , since it obeys (3), and by taking moments of (4) one obtains an exact linear equation
which depends parametrically only on the set {αi} at times t long enough such that we can
neglect [α̇]0. It follows that if this timescale coincides with the timescale appropriate to the
measurements described in non-equilibrium thermodynamics, then the evolution equations
will be linear. This linearity does not extend to entropy which is still the functional of fJ

given by Shannon [6]. Thermodynamic potentials do not necessarily exhibit the linearity of
the evolution equations.

The linearity implicit in (4) when fr = fT appears to contradict the work of Robertson
[3] who derived a corresponding equation for fJ which also claims to be exact if we can
neglect the initial state term. Robertson [3] defines an operator P̂Rḟ = ḟJ . Applying PR to
the Liouville equation, one gets an equation for ḟJ which is highly nonlinear.

In [3], the initial state term is eliminated, in accord with RPA, via the boundary
condition f (0, x) = fJ (0, x). The corresponding condition in (4) sets fi(0, x) = f (0, x) −
fT (0, x) = 0. As observed by Los [2], fT is obtained by projecting out the higher correlations.
fi(0, x) = 0 provided we take t = 0 to be a point in the system evolution where the
〈ÂiÂj · · · Âk(t)〉 having three or more operators have relaxed. This condition permits us to
neglect the nonlinear terms in the Robertson formalism [3]. The relaxation times for the
correlations have been estimated [8] to be ∼10−11 s in a simple fluid provided α is a flux of
heat or momentum. Accordingly, if one is measuring transport in steady states or at ultrasonic
frequencies, we have t large compared with the time for relaxation of the higher correlations.
Robertson nonlinearities should not be seen.

With ν = 1 and 〈Â(x)〉 = α, the linearized Robertson equation for α(t) has the form

α̇ = −(1/τα)(α − α0) + [α̇]0. (9)

The first term on the right-hand side comes from taking the moment of the second term on
the right-hand side in (4). Although the Zwanzig projection operator approach was developed
nearly 40 years ago, it is only recently that a way has been found of showing that τα > 0, in
agreement with other response theories. The long effort to evaluate τα sparked a debate on
whether evolution equations derived from (1) can exhibit irreversibility. The original Zwanzig
formalism [1] defined P̂ in terms of Dirac deltas, yielding a decay constant in (1) whose
value was hard to calculate. Here we shall define P̂ in (6a) for the linearized Robertson
formalism, giving an expression for τα in terms of a correlation function which agrees with
the fluctuation-dissipation theorem. This agreement has been shown in [10].

The term [ȧ]0 has generally been set equal to zero by invoking RPA, with Los [2] the
notable exception. The technique developed in [10] for evaluation of τα can also be applied
to the calculation of [ȧ]0. This calculation and the simplified form of the initial state term
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based on (4) rather than on the nonlinear Robertson equation for fJ are the principal new
contributions of this work. To evaluate [ȧ]0, one needs the ω-transform C(ω) of the correlation
〈ÂÂ(t)〉0 in an equilibrium ensemble. According to (9), α(t) decays exponentially at long
times. The Onsager fluctuation-regression hypothesis assumes that α(t) and Â(x, t) decay in
the same way, and this has been a basic assumption in non-equilibrium thermodynamics [4]
used to derive reciprocity relations. The attention given here to the exponential decay model
at long times should not be taken as an assertion that the exponential decay applies to all cases
or that exponential decay is necessary to make [ȧ]0 → 0 at long times.

In the following section, an operator identity is used to express the Fourier ω-transform
of [α̇]0 as a sum of powers of the ω-transform of Ċ(t). These powers constitute a geometric
series which can be summed. To invert the transform, one needs its poles which include
the zeros of C(ω) in the lower half ω-plane. These are estimated in section 3 for a model
of C(t) described in [11] which can be exact as we please at short times and which decays
exponentially as t → ∞. As explained above, this model postulates long-time exponential
decay of Ċ(t) commonly assumed in non-equilibrium thermodynamics [4]. The estimates in
section 4 show that [α̇]0 decays at long times. The final section reviews and summarizes the
whole paper.

2. Exact calculation of the initial state term in the evolution equations

To calculate the transform of the initial state term [α̇]0, we expand the integrand in (5) in
powers of iL̂P̂ using the identity ([3], equation (A1))

exp[(A′ + B ′)s] = exp(A′s) +
∫ s

0
dξ [exp(ξA′)B ′ exp[(s − ξ)(A′ + B ′)] (10)

and set

A′ = −iL̂, B ′ = iL̂P̂ . (11)

Iterating the expression in (10), we obtain

exp[−iL̂Q̂t] = exp(−iL̂t) +
∫ t

0
dξ exp(−iLξ)iL̂P̂ exp[−iL̂(t − ξ)]

+
∫ t

0
dξ [exp(−iLξ)iL̂P̂

∫ t−ξ

0
dξ ′{exp(−iL̂ξ ′)}iL̂P̂

× exp[−(t − ξ − ξ ′)iL̂] + · · · . (12)

This yields

ψf (t) ≡ Ṽ −1
∫

Â exp[−L̂Q̂t]f (0, x) dx ≡ 〈Â exp[−L̂Q̂t]f (0, x)〉0

= 〈A exp(−iLt)f (0, x)〉0 +
∫ t

0
dξ 〈A exp(−iLξ)iLA〉0

×〈A exp[−iL(t − ξ)]f (0, x)〉0 + · · · . (13)

Comparison with (5) shows that Ṽ −1[α̇]0 = ∂ψf (t)/∂t .
In order to evaluate ψf (t), we calculate the transform ψf (ω) and then invert the latter to

obtain an expression which goes to zero at long times. Taking advantage of the convolution
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in the products of integrals in (13), we obtain

ψf (ω) ≡
∫ ∞

0
ψf (t) exp(iωt) dt = Cf (ω)[1 − C̃(ω) + C̃2(ω) − · · ·]

= Cf (ω)/[1 + C̃(ω)] (14a)

Cf (ω) ≡
∫ ∞

0
〈Â exp(−iL̂t)f (0, x)〉0 exp(iωt) dt (14b)

C̃(ω) ≡
∫ ∞

0
〈iL̂Â exp(−iL̂t)Â〉0 exp(iωt) dt. (14c)

The convolution converts the transform of a product into a power of factors C̃(ω). The
geometric series in (14a) can be summed. Integrating by parts in (14c) and using the result in
(14a), we have

C̃(ω) = −1 − iωC(ω) (15a)

ψf (ω) = −Cf (ω)/iωC(ω) (15b)

ψf (t) = (1/2π)

∫ ∞

−∞
ψf (ω) exp(−iωt) dω. (15c)

To evaluate (15c) choose a contour closed in the lower half ω-plane. ψf (ω), from (15b), has a
pole at ω = 0. This makes a time-independent contribution to ψ(t) and therefore, from (5), a
zero contribution to [ȧ]0. ψf (ω) will have additional poles if C(ω) has zeros in the lower half
ω-plane. These contribute exponentially decaying terms to ψf (t) and to Ṽ ∂ψf /∂t. Whether
such terms exist or whether RPA holds depends sensitively on the analytical form of C(t). In
section 3 we calculate C(ω) using a realistic ansatz for C(t) designed to give correct results
at short and long times [11].

3. Zeros of C(ω) for a realistic correlation model

In [11], it is pointed out that the velocity autocorrelation function decays at long times as t−d/2,
and so correlations of conserved variables will not decay exponentially in general as t → ∞.
However, variables Â(x) such as the heat flux, whose values are used as relaxing parameters
in non-equilibrium thermodynamics, are non-conserved, and exponential decay is consistent
with the Onsager fluctuation-regression hypothesis.

We can also construct an argument stronger and more general than the one based on the
Onsager hypothesis. Suppose that t is very long and that we are close to equilibrium, so that a
linear equation (9) should be valid. If α is a heat flux component, its equilibrium value α0 = 0
and

α = α(0) exp(−t/τα).

We can construct the time correlation

〈Â(x, 0)Â(x, t)〉0 = Ṽ −1
∑

α

α

∫
φ(x|α)Â(x, t) dx

= V −1
∑

α

α2 exp(−t/τα) = 〈A(x, 0)A(x, 0)〉0 exp(−t/τα) (16)

where we sum over all values α of Â(x), and φ(x|α) is the phase space distribution at t = 0
given that Â(x, 0) = α. We find that C(t) = C∞(t), the exponential form, provided (9)
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represents the experimental result at very long times. The latter is given by the statistical
average of Â(x, t) calculated via the distribution function φ(x|α).

We seek an ansatz for C(t) consistent with the exponential decay of C(t) as t → ∞ and
also consistent with a short-time expansion in powers of t2. We have for small t

C(t) = 〈Â exp(−iL̂t)Â〉0 =
∑
n�0

(2n)!−1〈ÂL̂ 2nÂ〉0t
2n. (17)

Ċ(t) →
t→0

0 which is not true of the simple exponential,

C∞(t) ≡ 〈Â 2〉0 exp(−λt). (18)

Here we normalize Â so that 〈Â 2〉0 = 1. For long times, it can be shown, invoking the
fluctuation-dissipation theorem for τ , that

α̇ →
t→∞ − (1/τ)(α − α(∞)) (19a)

τ =
∫ ∞

0
C(t ′) dt ′. (19b)

Expression (19b) for τ is obtained [10] within a linearized Robertson approximation when an
analysis similar to that of the preceding section is applied to the relaxing term in α̇. If we use
C∞(t) for C(t) in (19b), we get τ = λ which is also a consequence of the Onsager fluctuation-
regression hypothesis. C∞(t) is thus a model for C(t) consistent with non-equilibrium
thermodynamics.

A representation a0(t) for C(t) which interpolates between (17) at t → 0 and C∞(t) at
t → ∞, keeping a finite but arbitrary number of terms in the t2 expansion, is [11]

a0(t) =
Pm∑
p=1

bpt2p−2 sech(py1t) (20a)

a0(t) →
t→∞2b1 exp(−y1t) (20b)

where pm is the arbitrarily-chosen number of terms. The {bp} can be adjusted to make a0(t)

agree with (17) as t → 0 to the number of terms chosen, whilst y1 agrees with (18b). Differing
numbers pm of terms characterize different models.

All the models generated by (20a) predict that a0(ω) has no zeros in the lower half ω-plane
and that, if a0(ω) is used as a model for C(ω), then the poles of ψf (ω) in (14b) must arise
from those of Cf (ω), except for the one at ω = 0. Any simple poles of ψf (ω) will cause an
exponential decay of a0(t) when the ω-transform is inverted unless C(ω) has a pole at the
same ω as does Cf (ω).

The simplest approximation to (20a) keeps only the p = 1 = pm term:

a1
0(t) = b1sech (y1t). (21)

This satisfies a1
0(t)t→0 and also (20b). Setting β ≡ py1, we expand

sech (βt) = 2[e−βt − e−3βt + e−5βt − e−7βt + · · ·] (22a)

a1(ω) ≡
∫ ∞

0
exp(iωt)a1

1(t) dt

= −2b1

∑
k�1

(−)k[iω − (2k + 1)β]−1. (22b)
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We wish to find ω = ωr + iωi such that a1(ω) = 0. To have a zero of a1(ω), we must have
ωr = 0. Then

a1(ω) ≡ a1
i (ωi) = 2b1

∑
k�0

(−)k[ωi + (2k + 1)β]−1. (23)

a1
i (ωi) has poles in the lower half-plane at

ωi/β ≡ ω̄i = −(2k + 1) (k = 0, 1, 2, . . .). (24)

Let K be an even integer and >0 and let ω̄i vary over the interval −(2K + 1) < ω̄i <

−(2K − 1). The terms k = K and k = K − 1 in the sum in (22) are both >0. Terms with
k > Kalternate in sign and decrease with magnitude of K and so the sum of any number of
terms with k � K is >0. Similarly, the sum of terms with k � K − 1 is >0, and so a1

i (ωi)

has no zeros in this interval. If K is odd, we have a similar result, except that the sums are
<0. a1(ω) has no zeros in the lower half ω-plane.

Accordingly, using a1(ω) as the model for C(ω) in (15b), we find from (15c) that ψ(t) can
derive its time dependence only from poles of Cf (ω). In (19a), b1 = 1 and sgn bp = (−)p+1.
The {b}p with p > 1 can be adjusted to fit experiment or a numerical valuation of the expansion
coefficients in (17).

Letting a
p

0 (t) be the p-term in (20a) for any p � 1, we have

ap(ωi) = bp(−)m
(
∂2m

/
∂ω2m

i

)
bpa1

p(ωi)

= bp(−)m
∑
k�0

(−)k(2m)!/[ωi + (2k + 1)β]2m+1 (p > 1,m ≡ p − 1). (25)

ap for p > 1 has infinities at the same values of ωi as does a1(ω), and the K term in (25)
for arbitrary K term in (23), taking into account the sign of bp. Therefore, the ω-transform of
a0(t) will have no zeros in the lower half ω-plane, however many terms we take in the sum
over p � 1. The only pole contributing to the integral in (15c) is the one at ω = 0, and this
yields a constant for ψ(t), unless Cf (ω), where

Cf (ω) =
∫ ∞

0
〈Af (t)〉0 exp(iωt) dt = Ṽ −1α(ω), (26)

has a pole.

4. Comparison of the exact initial state term with RPA

Let us note at the outset that RPA would cause ψf (ω) to vanish, whereas we want to use
RPA to justify setting ψf (t) = constant, making [α̇]0 = 0. If that holds, then we say RPA is
exact, although ψf (ω) may not vanish. RPA leads to the correct result but does not agree in
all respects with the present analysis. We proceed here to show that if t is large enough so
that C(t) can be represented by C∞(t) in (18), as implied by (20b), then RPA applied to [ȧ]0

agrees with the exact result for ψ̇f (t).

If α(t) relaxes with the relaxation time τ given by the fluctuation-dissipation theorem,
then τ is given by (22b). If we use C∞(t) as a model for C(t), with λ being the relaxation
time of C∞(t), then τ = λ, and from (25) both α(ω) and Cf (ω) have poles at the same point
ω [10]. The ratio α(ω)/Cf (ω) has no pole at this point. Inversion of the transform ψf (ω)

leads to ψf = constant, and

[α̇]0 = ψ̇f (t) = 0. (27)
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In general, we have from the ω-transform of (4)

α̇(ω) =
∫ ∞

0
exp(iωt)α̇(t) dt = −α(0) − iωα(ω)

= −iω
∫ ∞

0
dt exp(iωt)

∫ t

0
〈iL̂Â exp[−iQ̂L̂(t − t1)]Âα(t1) dt1〉0 + [α̇]0(ω)

= −iωα(ω)

∫ ∞

0
dt exp(iωt)〈iL̂Â exp[−iQ̂L̂t]Â〉0 + [α̇]0(ω)

= −iωα(ω)ψ(ω) + [α̇]0(ω) = −iωα(ω)[1 + C̃(ω)] + [α̇]0(ω) (28)

where

ψ(t) ≡ 〈iL̂Â exp[−iQ̂L̂t]Â〉0. (29)

ψ(ω) can be evaluated with the aid of (11) and (12), by analogy with the expansion of ψf (ω).
Then equations (28) and (29) can be put [10] in the form

α(ω)[iω + {(C̃(ω) + 1)/C(ω)}] = 0. (30)

According to (15a), the square bracket vanishes identically. Therefore, if we do not use RPA
and, rather, retain the initial state term in α̇, then the equation for α̇ extracted from (4) does
not determine α(t). To determine α(t) for all times, including very short time, we need the
exact solution f (t) of (2) to substitute into (4).

If the time t is �0, so that we can apply RPA and set [α̇]0 = 0 in (5) and (28), then
calculating α(ω) from (27), we obtain an expression valid in the time domain of validity of
non-equilibrium thermodynamics. Robertson [3] has shown that RPA and (4) give the linear
thermodynamic evolution equations. From (29), if α(ω) is the solution of (28) without the
term [α̇]0(ω), then substitution of this solution into the initial state term should give an [α̇](ω)

whose inverse transform will vanish. This is illustrated above where the poles in Cf (ω) and
C(ω) cancel each other, leaving only the pole at ω = 0 in (15b). The latter pole contributes a
constant to Cf (t) and zero to [α̇]0(t). Thus if RPA is used to eliminate the initial state term
from the rate equation for α̇, the solution of the resulting equation for α̇ gives zero when put
back into the initial state term. We cannot use non-equilibrium thermodynamics to calculate
α(t) for very short times where the initial state term in (4) must be kept. That this should
be true is also evident from the circumstances that α(t), V ,E are not sufficient as t → 0 to
determine the evolution of the system.

5. Summary and conclusion

In the preceding section, it has been shown that if t is large enough and C(t) decays
exponentially at long times, we have RPA exact in the sense defined at the beginning of
section 4. The relaxation equation (19a) is then obtained which is a phenomenological
equation of non-equilibrium thermodynamics. It has been possible to show this without
making assumptions about any correlations save the two-operator correlation C(t). If the
latter does not decay exponentially, we can still conclude that if ψf (ω) has poles, these will
cause [α̇]0 to decay exponentially with time, and if ψf (ω) has no poles, then RPA is exact.
That the initial state term in (4) will go to zero as t increases has also been argued by Los [2],
and here we present an alternative demonstration based on an exact calculation which invokes
the identity (10).

The method used here in calculating [ȧ]0 invokes the procedure used in [10] to calculate τα

in (8). An equation having the form of (9) was derived in [1] to show that evolution equations
having the structure of those postulated in non-equilibrium thermodynamics could be obtained



RPA in initial state 3659

from the Liouville equation (1). However, the Zwanzig projection operators involved Dirac
deltas with which it is difficult to calculate, and efforts to prove τα > 0 have defied nearly
four decades of attempts. This has led to assertions [9] that one cannot extract a prediction
of irreversible behaviour from the Liouville equation. The Robertson formalism [3] does not
use Dirac deltas, and it recently [10] proved possible to extract τα in (9). If α is a component
of the heat flux, and we add a driving term proportional to an externally imposed temperature
gradient to (9), we can obtain a steady state with α = 0 and proportional to τα and to the driving
term. From (18b), the transport coefficient is proportional to a correlation, as in Kubo–Green
theory and as predicted by the fluctuation-dissipation theorem. The result is well known, but
how to extract it from the Liouville equation has been a perennial unsolved problem.

The equation for α̇ which results from applying RPA to (4) and using the definition (6a)
for P̂ and taking a moment is linear. It is, in fact, the linearization of the corresponding
kinetic equation derived by Robertson [3] using his operator P̂ R. The nonlinearities of the
Robertson formalism involve [1] correlations 〈ÂiÂj · · · Âk(t)〉0 of three or more operators.
We can conclude from calculations based on (4) that these higher correlations have relaxed
when t is long enough so that C(t) decays exponentially or, more generally, where RPA holds.

We have discussed the equivalence of RPA to the equation f = P̂ f . This is analogous to
the condition f = fJ postulated by Robertson [3]. It has been observed that f = P̂ f would
hold if correlations 〈ÂiÂj (t) . . . Âk(t

′)〉0 and those of higher order had relaxed at t0, whilst
〈ÂÂ(t)〉0 is still relaxing. If the relaxation time τ for this correlation is the same as that for
α, as prescribed by the Onsager fluctuation-regression hypothesis, the two-particle correlation
and α would relax together. Since the time τ is very short when α is the heat flux, we do not
observe this relaxation in practice. Extended thermodynamics (EIT) assumes that τα does not
depend explicitly on time. Thus EIT considers (9) at a time �τα at which time the coefficients
in (9) are time independent. EIT yields the correct steady-state transport coefficient, but it
does not describe accurately the relaxation of the heat flux, which we do not observe. So long
as t is long enough, and we are not interested in observing the actual short-time decay of α

to its steady-state value, we can suppose that C(t) = 0 at t and that all the correlations have
relaxed. If we do not want a description of relaxation at time ∼τα , we do not have to suppose
that the higher-order correlations relax first. It suffices to assume they are all effectively zero
at t.

Phenomenological estimates of τ in the case where Â is a component of heat or momentum
flux give τ ∼ 10−11 s [8]. This is much less than the period of an ultrasonic wave or the
duration of a steady-state measurement. Therefore, we expect that transport coefficients
in simple fluids, at timescales usually used in taking measurements, will be linear. Non-
Newtonian viscosities are found e.g. in polymers with transport coefficients dependent on the
squares of fluid temperature or velocity gradients. They are also found at very high shear
rates [12].

Although the equations for ḟ T obtained by using the definition (7) in (4) is linear, there
still exist possible nonlinearities when the independent variables are particle density and
temperature T rather than particle density and energy density which have been used in the
above calculations. The Shannon entropy, −κ Tr(fJ ln fJ ), where κ is the Boltzmann constant,
is still the statistical entropy analogue we need to derive non-equilibrium thermodynamics
and the corresponding caloric equation-of-state, agreeing with classical thermodynamics in
equilibrium:

E =
∫

fJ Ĥ (x) dx. (31)

Since fJ is nonlinear, the equation of state and other thermodynamic potentials will, in general,
be nonlinear. If this nonlinear equation is used to eliminate E in favour of T in the equation for
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α̇, the resulting evolution equation will be nonlinear. Specializing the equation to the steady
state where α̇ = 0, we get a nonlinear generalization of Fourier’s law with heat conductivity
dependent on heat flux or of the Maxwell stress-relaxation equation with relaxation time
dependent on the traceless pressure. We cannot say that nonlinearities will not be observed in
fluid transport when the temperature and velocity gradients are large enough. Indeed, they are
seen [12] in the computer simulations of Couette flow at high shear rates.
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